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A macroscopic description of the linear Weibel instability, based on a closed set of linear moment 
equations, is presented. The moment equations are derived from the Unearized Vlasov equation by 
taldng the appropriate velocity moments of it and the closure is achieved by means of an 
assumption, which is justified when the temperature anisotropy is strong. The macroscopic 
description is manifestly more informative of the physical mechanism of the instabiUty than the 
kinetic description. It is hoped that the researchers will find such a description analytically more 
convenient to use in solving plasma physics problems where Weibel instability due to strong 
temperature anisotropy plays a role.    [DOI: 10.1063/1.1521716] 

Particle distributions in velocity space with an enhanced 
temperature along some direction are quite common in both 
laboratory and space plasmas where the degree of colUsion- 
ality is relatively low. There are a number of ways in which 
such a temperature anisotropy can develop in magnetically 
confined as well as in magnetic field-free plasma. Coulomb 
colUsions eventually make the plasma distribution isotropic. 
However, collective processes (instabiUties) due to the tem- 
perature anisotropy can be more effective than the binary 
collisions in moving the plasma toward an isotropic state. 
These instabilities can be both electrostatic and electromag- 
netic in nature.^ Here we shall deal with a particular electro- 
magnetic instability due to temperature anisotropy, known as 
the Weibel^ instabiUty, which is excited in coUisionless 
plasma, even in the absence of an external magnetic field. 
The unstable waves are transverse electromagnetic waves, 
involve only the electron population, and do not produce 
density perturbation. The Weibel instability is considered to 
be one of the mechanisms for magnetic field generation'*'^ in 
laser produced plasma, with special significance in laser fu- 
sion experiments. It may also play an important role in the 
magnetic reconnection process in the Earth's magnetotail by 
participating in the dynamics of the electrons in the so-called 
electron diffusion region.^ 

Weibel's work stimulated a series of further 
investigations^"^'* of the transverse electromagnetic instabil- 
ity in unmagnetized plasma. These papers dealt with the fin- 
ear, quasiUnear and fiilly nonlinear theories as well as the 
computer simulation experiments of the instability. At the 
same time, several other authors'^"^^ investigated the elec- 
tromagnetic instabilities in magnetized plasma for a wide 
variety of anisotropic velocity distributions and for different 
orientations of the propagation vector. Most recently, Cali- 
fano etalP"^^ have carried out fiirther investigations of 
Weibel-type instability, where the role of temperature anisot- 
ropy is taken by two counterstreaming electron populations. 
All of the previous analyses, including that of Weibel, have 
been based on the Vlasov-Maxwell formalism. 

^'Electronic mail: baraandas.basu@hanscom.af.iiiil 

In the Vlasov-Maxwell formafism, the Unear dispersion 
relation for Weibel instability in unmagnetized plasma is de- 
rived by solving the finearized, nonrelativistic Vlasov equa- 
tion. 

d \_ e/_    1      _\    ^        , 
- + v.V/(r,v,0--E+-vXB.-/o(v) = 0, 

and the two Maxwell's equations. 

1 ^B 
VXE=--—, 

c  dt 

VXB= 
Atre 

J fifw7(^,v,0+- 
l <?E 

'di' 

(1) 

(2) 

(3) 

self-consistently. Here /o(v) is the unperturbed electron ve- 
locity distiibution, f{T,\,t) is the perturbation of the distri- 
bution, and E and B are the perturbed electric and magnetic 
fields, respectively. Considering 

I 3/2 riQ    I m 
exp 

m 

2T, 

m 
(v^ + v^) v' 2n 

(4) 

and space-time dependence of the perturbations of the form 
~exp[i(fe-wO], the hnear dispersion relation of the trans- 

verse waves (k-E=0) is then obtained as 

2/.2. ■c'-k ft) pe 

(O 

11/ J 

= 0. (5) 

Here ft)pg = (4ire^no/m)''^ is the electron plasma frequency, 
y7-=(2r||/m)"^ is the electron thermal speed associated 

with Til, and W^(^) = -1 - ^Z(^), where Z(^) is the plasma 
dispersion function. Weibel^ demonstrated instability by con- 
sidering the I ft)/(A: Vj-) | > 1 limit of Eq. (5). A more system- 
atic analysis of Eq. (5) can be found in Ref. 14. The results 
are summarized below. 

For small deviations from isotropy, (rj^-r||)/r||<^l, in- 
stability is found for a low frequency mode such that 
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\(o/{kVj-^)\<l. With the substitution of W(^)s-i-,>"2f 

for \^\<^l, and the use of (o<ck, Eq. (5) becomes 

/ , / ,— (a \ 
=0, (6) 1+*""^ ^""^F 

TL\ r— ^ 

where t>0 has been assumed. The solution for <a is then 
given by*"* 

kV 
(i)=i 

r, r„ 
yfn- T± 

(7) 

It shows that purely growing waves are excited when T^ 
>T^ and for the values of k in the range 0<k<k„, where 
kl={ioljc'-){TJT,-l). 

For strong anisotropy, {Ti^-T^)IT\^\, the approxima- 
tion \(al{kVT^\<\ with <a given by Eq. (7) tends to break 

down, except when *«fc„. Vox k<k„, the instability is 
found for frequency w such that \oil{kVT)\>\. In this re- 
gime, W(|)s 1/(2|2), and so Eq. (5) becomes 

(o'—c'-k 2a. (O pe 1 + 
k^T^ 

m(o 
=0. (8) 

For <>><ck, this again yields a purely growing solution given 
by' 

(O 

m 
pe 

■pe 

1/2 

(9) 

It may be verified that the restriction \o)l{kVj )\>\, with a» 
given by Eq. (9), is satisfied only when T^>T^^. 

In this Brief Communication, we present a macroscopic 
description of the Unear Weibel instability for the strong an- 
isotropy (,T^>T^ case. The description is based upon a 
closed set of Unear moment equations that are derived from 
the Unearized, nonrelativistic Vlasov equation by taking the 
appropriate velocity moments of it. The derivation requires 
integration by parts and use of the symmetry properties of/Q 

in velocity space. The closure is achieved by means of an 
assumption, which is justified when |w/(jtyj-)|^l, i.e., 
when the temperature anisotropy is strong. A similar macro- 
scopic description for the weak anisotropy case is not pos- 
sible since the instability relies on a wave-particle resonance 
process. 

We consider transverse waves propagating in the 
z-direction, so that E,=B^=0. By taking the successive ve- 
locity moments of Eq. (1), we find the following intercon- 
nected chain of moment equations: 

d              1     oi _       e _ —n = p p (10) 

(11) 

Jt —.Qxzz + m dyvyj(r,y,t)=--Po,,E„      (12) 

and so on. These are the linearized, one-dimensional versions 
of the moment equations^'* that can be obtained from the 

exact Vlasov equation. Here M^ is the J:-component of the 

perturbed electron mean velocity u, P^^ is the j:z-element of 
the perturbed stress tensor P, Q^^^ is the j:zz-element of the 
perturbed heat flow tensor Q, and their standard definitions 
are 

u^{r,t)=—    d\yJ(T,y,t), 

P„(r,0 = mj dw^\J{T,y,t), 

e„z(r,0 = mj dyy^vlf{r,y,t). 

(13) 

(14) 

(15) 

The unperturbed stress tensor PQ , corresponding to the /o 
given by Eq. (4), is diagonal and its elements are P^^^ 
-Poyy—f^oTi and Pozz—"oT\\, the other elements being 
zero. The notations on the right hand side of Eq. (11) mean 
xz- and zx-elements of the tensors resulting from the cross 
products. The moment equations are the exact consequences 
of taking the appropriate velocity moments of Eq. (1), using 
the symmetry properties of/Q in velocity space. However, 
they do not form a closed set, since each equation contains a 
term of the higher-order moment. We truncate the chain 

of equations by assuming m(<9/^z)/rfw^v^7(r,v,r) 

<{dQxzz/^t)' so that Eq. (12) reduces to 

6>_    _    e 
■^xzz=--P^ m Ozz^x • (16) 

Simple order-of-magnitude estimates indicate that the valid- 
ity of the assumption requires \<o/{kVj-)\>l for a wave 
propagating along the z-direction with frequency w and wave 
number k. We shall examine this assumption in more details 
later in the paper. 

Equations (10), (11), and (16) together with the two 
Maxwell's equations, c{VXE)=-dB/dt and c(VXB) 

= -4TTenQU+dE/dt, provide a closed macroscopic descrip- 
tion of the linear Weibel instability in the regime correspond- 
ing to \(a/{kV-f^)\>l. To verify this, we substitute solutions 

of the form A(r,r)=^(A:,w)exp[j(fe-wO] into Eqs. (10), 
(11), and (16) to find 

-. p £• 
mnnw   "^    mta   " 

Pxz = -Qx ,+ -{T.-TJBy, 
mccD 

Qxzz=- 
/enor,! 

mw Er. 

From Eqs. (18) and (19) we have 

ierinkTu ,      ierin 

^ mw mco>    "      ^'  >' 

and then combining Eq. (20) with Eq. (17) we find 

Wr = 

le 

ma) 
14- 

k'T, 

mco 

k{T,-TJ 

mc(a B. 

(17) 

(18) 

(19) 

(20) 

(21) 
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Finally, combining Ex=((o/ck)By and Bj,= -(47n7 
ck)enQU^+{b)/ck)Ex, which follow from the Maxwell's 
equations, with Eq. (21) we obtain the dispersion relation 

(O 
P^\       may 

=0, (22) 

which is exactly the dispersion relation that is obtained from 
the Vlasov-Maxwell formalism in the limit \<al{kVT^\>\ 

[see Eq. (8)]. We recall that the condition \(ol{kVT)\^^ 
corresponds to the strong temperature anisotropy case. 

Let us now return to the assumption by which the term 

m{d/dz)Sdy\^vlf(r,y,t) in Eq. (12) was neglected and thus 
closure was achieved. If we multiply Eq. (I) by v^^, inte- 
grate over velocity space using the symmetry properties of/o 
and neglect the higher-order velocity moment term, we find 

-J rfw,v^/(r,v,o^^ie^(r„-rjB, —3— m c 
(23) 

So, had we retained the term m{dldz)SdWj^^J(r,\,t) in the 

equation for Q^^^^ then instead of Eq. (20) we would have 
obtained 

ien^kTw lerin 

mew 

+ ■ 
ieriQ 13fc r|| 

mcu) \ mo) r (^ii~^j-)^>" (24) 

where the last term on the right hand side of Eq. (24) is the 
additional term. It is clear that the additional term may be 
neglected in comparison with the second term when 
\w/{kVT )\>l. Similarly, it can be shown that the contribu- 

tions to P^^ from higher-order velocity moment terms are of 
higher order in e=\kVj- /<o\<$l, and so are even smaller. 

Hence, the closure of the chain of moment equations by 
adopting Eq. (16) is indeed justified when \(o/(kV^)\>l. 

It should be pointed out that an equivalent macroscopic 
description of the instability is obtained if the equations for 
Uy, Pyj. and Qy^^ are considered instead. These equations are 
readily obtained from Eqs. (10), (11), and (16) with x re- 
placed by y everywhere. In other words, there are two Un- 

early independent eigenstates, represented by {u^ ,Pxz'Qxzz} 

and {uy,Py^,Qyzz}' respectively, with the same eigenvalue 
Wjt. This degeneracy, which is a consequence of the symme- 
try of/o(v) in velocity space, is removed when an external 
magnetic field Bg is applied. The moment equation descrip- 
tion presented above can be extended to the magnetized 
plasma case in a straightforward manner by noting that Eq. 
(1) will have an additional term represented by —{e/mc) 

X(vXBo)(o'7/(?v), and can be used to study the effects of 
the external magnetic field on the Weibel instability. For ex- 
ample, if we take BQ to be along the z-direction, the addi- 
tional   term   leads   to   coupling   between    the   states 

{ux'Pxz'Qxzz} ^n^ {"y^Pyz'Qyzz} ^^^ 'o cyclotron motion 
of electrons. Consequently, the corresponding equations for 

Uy, Py^ and Qy^^ are needed. Those equations can be derived 
in a similar manner using the same closure approximation. It 

is found that, in magnetized plasma, circularly polarized 
waves are the proper eigenmodes with different dispersion 
relations for the right and the left circular polarizations. Fur- 
thermore, the perturbed electric field associated with the 
transverse waves propagating only along the z-direction has 
no electrostatic part. It arises solely from the fluctuating 
magnetic field. 

The macroscopic description, based on the moment 
equations, is manifestly more informative of the physical 
mechanism of the Weibel instability than its kinetic descrip- 
tion. The proposed moment equations and the subsequent 
analysis leading to the derivation of the dispersion relation 

show that the stress tensor term P^^ (or Py^) in the momen- 
tum balance equation plays a crucial role in the excitation of 
the instability. Without this term, one would recover the fa- 
miliar stable electromagnetic mode in plasma, which is de- 
scribed by (o^=c^k^+(oj,g. The analysis further shows that, 
in order to accurately determine P^^ (or Py^), the heat flow 
term Q^c^^ (or Qy^^) describing perpendicular (to k) flow of 
the parallel (to k) thermal energy due to the ttansverse elec- 
tric field E^ (or Ey) must be retained. The physical mecha- 
nism represented by the moment equations is that the force 
experienced by the electtons in the fluctuating field and the 
associated heat flux cause a momentum flux (P), which af- 
fects u (and hence current density j) in such a way as to 
increase the field fluctuation. Earlier, Fried^ offered a suni- 
lar explanation by means of an approximate treatment, and 
the role of heat flow was not recognized. The moment equa- 
tion description presented here seems to provide a more 
complete and accurate picture of the instability. A kinetic 
description of linear Weibel instability can become quite 
cumbersome analytically, if the equilibrium magnetic field is 
inhomogeneous as, for example, is the case with the Earth's 
magnetotail, since it involves the calculation of unperturbed 
particle orbits and the integration of the linearized Vlasov 
equation along those orbits. The same may be true for other 
space and laboratory plasmas. So, it is hoped that the re- 
searchers will find the moment equation description analyti- 
cally more convenient to use in solving plasma physics prob- 
lems where Weibel instabiUty plays a role. But, we reiterate 
that the applicability of this description is limited to the hy- 
drodynamic regime [|<«/(fcy7-)|>l], which in the context 
of the Weibel instability corresponds to strong temperature 
anisotropy. 
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